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It is shown that if £ is a C* determining compact set in R”, then Markov’s
inequality for derivatives of polynomials holds on E iff there exists a continuous
lincar extension operator L: C*(E)— C*® (R"). Other cquivalent statements (c.g.,
Bernstein’s approximation theorem for C* functions, topological linear embedding
of C*(E) into the space of rapidly decreasing sequences of real numbers) are also
given. As an application, we prove that each of those properties (of the set E) is
invariant under regular analytic mappings. © 1990 Academic Press, Inc.

0. INTRODUCTION

Perhaps one of the most laborious tasks in approximation theory is to
compile the list of papers dealing with the classical Markov’'s inequality
and its generalizations. A contribution to this theory has been given
by W. Pawlucki and the author in [2], where it is shown that, for each
polynomial p: K" - K (K=R or K=C) and each multiindex «,

1D%pll < M(deg p)"* [ pll ) (0.1)

with positive constants M and r independent of p and «, whenever E is a
uniformly polynomially cuspidal (UPC) compact subset of K”. (Here ||p|
stands for sup | p| (E).) Actually, in order that (0.1) hold it is sufficient that
Siciak’s extremal function @ (see [7]), defined by the formula

@ (x)=sup{|p(x)|}'*e?: pis a polynomial on C" of
degree =1 with || p| <1},

for xe C”, be Holder continuous in the sense that

Do(x)< 1+ MS™ whenever dist(x, E) <6<, (HCP)
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with M >0 and m>0 independent of ¢ {see [2. Remark 3.27). Recently
Siciak {personal communication) has constructed a Cantor’s type compact
subset F of the line-segment [0, 1] that satisfies (HCP). Thus, the family
of HCP compact sets in R” is strictly larger than that of UPC sets. We niote
that by the famous Hironaka’s rectilinearization theorem and Lojasiewicz’s
inequality, every subanalytic compact set E in R" with int £ dense in
E is UPC [2, Corollary 6.6]. As an application of Markov’s inequality
it has also been proved in [2, Theorem 5.17 that a function /1 E—~ R
is the restriction of a C* function on R" iff for =sach r>0,
lim, . . k" distz(f, P,)=0 (Bernstein’s theorem), P, denoting the space of
{the restrictions to E of) all polynomials of degree at most k. and

distg(f, Pi) :=inf{||f—plp:pe P}

Applying both Markov’s inequality and Bernstein's theorem, we have
shown in [4] (see also [3]) the existence of a continuous linear operator
extending C* functions from an HCP compact subset of R” to the whole
space and have constructed [5] a topological linear embedding of C™(E}
into the Fréchet space s of rapidly decreasing sequences of real numbers.

This paper completes the previcus articles by W. Pawlucki and the
author. Here, applying the techniques developed in [2, 4, 5], we point out
that Markov’s inequality, as well as Bernstein’s theorem, is equivalent to
the existence of a continuous linear extension operator for C* functions on
E in the case that E is a compact subset of R", C* determining in the
following sense: For each fe C* (R"), fo=0 implies D% =0, for ali
acZ” . This seems not to be known to specialists in the field. As an
application, we show that each of the equivalent properties of £ is
invariant under regular analytic maps. We close the paper by formulating
some open problems concerning sets with Markov’s property.

1. C* FUNCTIONS

A C™ function on a compact subset E of R” is a function f: £ — R such
that there exists a function fe C*(R") with f, s =/f. Let C*(E) be the space
of such functions. Following Zerner [12] we introduce in C*{E) the sermi-
norms d_ (/) :=|flg dolf):= dist ([, Py}, and for k=1, 2, ..,

di(f) = sup I* dist(f; P)).
iz1
By Jackson’s theorem (see, e.g., [10]) the 4.’s are indeed seminorms on
C*(E). Denote by 1, the topology for C*(E) determined by the seminorms
d, (k= —1.0, ..). In general, this topology is not complete.
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Let now t, be another topology for C*(E) determined by the seminorms

gk f) =inf{|f| : fe C*(R), fie=1},

where for each compact set K in R” and each k=0, 1, ...,
P = max DTl

Then 7, is exactly the quotient topology of the space C*(R")/I(E), where
C*(R”*) is endowed with the natural topology 7, determined by the
seminorms [-|%, and I(E):={fe C*(R"): f,=0}. Since (C*(R"), 7o) is
complete and /(E) is a closed subspace of C*(R"), the quotient space
C*(R")/I(E) is also complete, whence (C*(E), 7,) is a Fréchet space.

Suppose now E is a C* determining compact set in R". Then by
Whitney’s extension theorem the space (C®(E), 1,) is isomorphic to the
Fréchet space of C* Whitney fields F=(F*) (x€ Z" ), where each I'* is a
continuous function on E, endowed with the topology 7, determined by the
seminorms

LF s = | Fls + sup{|[(REF)® (»)/|x—p|* 1™ i x, pe E, x £y, la| <k},
(k=0,1,..), where
|Fl%=sup{|F¥x)| :xeE, |a| <k}
and

(REFY (1)=F*(3)— T () +Hx)(y—x)F.

1Bl <k—la

Assume, moreover, that the compact set E has the C™ extension property:
Every C* function on int E that is uniformly continuous together with all
its partial derivatives can be extended to a C* function on R”. Then the
topologies t, and 75 coincide with the topology 7, determined by the semi-
norms

|f1%=sup{|D*f(x)| : xeint E, |o| <k}.

(For details see [4].) Further on, we shall need the following known

LemMa 1.1 (see,e.g., [1, [42]). There are positive constants C, depending
only on aeZ", such that for each compact set E in R" and each ¢> 0, one
can find a C* function u on R" satisfying 0<u<1 on R*, u=1 in a
neighborhood of E, u(x)=0 if dist(x, E)>¢, and for all xe R" and ae 2",
[ D*u(x)] < €, g7,
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2. LAGRANGE INTERPOLATION POLYNOMIALS

Let x:N3j—-&(j)=(x,(j) -, k,(j))€Z". be a one-to-one mapping
such that for each j, |i(j)| <|x(j+1)]. Let m, denote the number of all
monomials x*:= x* ... x* of degree at most k. One can easily verify that
my=("5). Set e,(x):=x*D, for j=1,2,... The system {e,,.., e, | is 2
basis of the space P, of all polynomials from K” to i of degree at most
k{K=R or K=0C).

Let Ty= {1, .., t;} be a system of k points of K". Consider the Vander-
monde determinant

W(T,)=V(t,, ..., t) :=det[e,{1;) ],
where I, je {1, .., k}. If V(T,)#0, we define
L(j)(xa Tl\) = Lf(tla ey [jflv X, fj+17 HE] ik),r" V(Tkj

Since LY'(1;, T,) =4, (Kronecker’s symbol), we get the following Lagrange
interpolation formula (cf. {8, Lemma 2.1]):

(LIF) If peP, and T,, is a system of s, points of K" such that
WT,,)#0, then

my

plx)=7Y p(t)LVx T,,). for xel"
j=1
Let E be a unmisolvenr compact set in K" That means that for cach
polynomial p, p=0 on E implies p=0 in K" A system 7T, of k points
{ty, .1y} of E is called a Fekete—Leja system of exiremal points of £ of
order k, if [V(T,)| = |V(S,)| for all systems S, = {s,....5,} < E. Since £ is
unisolvent, we have V(T,)#0 (see [8, Proposition 4.3]), and then

[LP(x, Tl <lonkE, for j=1,..k (2.1
If /: £ K is a function on £, for any system T, of extremal points ¢f Z
of order m1,,, we set

my

L f(x)=Y fu)LYx, T,,) (22)

j=1
L, fis called the Lagrange interpolation polynomial of f of order k. Suppose
fis continuous and p, is a metric projection of f onte P,. Then by LIF.
(2.1}, and (2.2). we get for k=2
I f~Liflle<|f=pille+ 1 Lo f— Ll piil £
<(met 1) 1= pell o S 4K dist o f2 P). (2.3)

i~
L
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Due to this inequality, in problems connected with polynomial approxima-
tion of C™ functions one can well replace the metric projection
f—dist.(f, P;) by the linear projection f— L, f.

3. THE MAIN RESULT

Let E be a unisolvent compact set in R” and f: E —» R. Fix a point t,€ E
and set L, f(x)=f(t,). Foreachk=1,2, . let T, = {1} ,..th, }cEbea
Fekete—Leja system of extremal points of E of order m, and let L, f denote
the Lagrange interpolation polynomial of f of degree k£ with nodes in T, .
Then we set ¢,(f)=f(t,), and for M,<j<M,,.,, where M, :=

my+ --- +m, for k=0, 1, ..., we define
0, (V=L [~ ka)(ffjnllk)-

In [5] we have proved

PrROPOSITION 3.1.  For any unisolvent compact subset E of R”, the assign-
ment @:f— {@;(f)};2, determines a topological linear embedding of the
space (C*(E), T,) into the Fréchet space s of all rapidly decreasing sequences

of real numbers furnished with the norms (x|, :=sup; j* [x, £=0,1, ...

In order to make this article self-contained we shall repeat the argument
of [5]. It is clear that ¢ is linear. By LIF (Section2) and (2.3), ¢ is
injective. To prove that ¢(f) € s, observe that by (2.3), for each r=0, 1, ..,
and M, <j<M,,,, k=12,.., we get

Ijr(/’j(f)l <M/r<+1 Ly =Ly flle
SCk(”+1)r+'l diStE(f; Pk}< Cd(rz+l)r+n(f)’

where C is a constant depending only on » and r. If 1<j<M,, we also
have |, (f| <2m;d_,(f). Hence, in particular, ¢ is continuous. To prove
that ¢ is a homeomorphism (onto ¢(C*(E)) it suffices to show that for
each r= —1,0, .. there are a positive integer s and a constant M > 0 such
that d,(f) < M|p(f),. To this end, write g, := L, fand g, :=L, f~L, |/,
if k>0. Since /=3 ,q, on E, for r>0 we have

(e} o
Fdiste(f, PO<SE Y llgle< Y kgl
k=1+1 k=1+1

< (7[2/6) sup krt? lgell £

k=1
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On the other hand, by LIF we get

(s

g5/l e =sup Z |qk([f)L(”(xa T,,)| <m; max IC]k(If}f-

xekj=1 I<i<my
Hence, since for each k> 1 we have k< M, _,, it follows that

d,(f)<Msup k"> max{lo,(/]: M, <j< M)
kz1

<A[ ;(p(f)‘r+n+2

with M depending only on n. If r =0, we also have

Al )< f—Loflle< Z gl e < (@3 4+ 1) 1o Nusn-

k=1
This completes the proof of the proposition.

Remark 3.2. In general, ¢ is not a surjection on o. The reason is that
for k #1, the set T, may meet the set 7,

my Lt

Now, our main result reads as foliows.

THEOREM 3.3. If E is a C* determining compact subset of R" then the
Jollowing statements are equivalent.

(1} (Markov’s Inequality) There exist positive consianis M and r
such that for each polynomial p and each a€ 7",

1D7pll s < M(deg p)" ™ [ pll &

(ii) There exist positive constants M and r such that for every poiyno-
mial p of degree at most k, k=1,2, ..,

PO <M pl, if xeE:={xeC":dist(x, E)</k"}.

(ii") There exist positive constants M and r such that for every polyno-
mial p of degree at most k, k=1,2, ...,

Ipx <M || plle if xeE,:={xeR":dist(x, )< 1/k"}.

{(iii) (Bernstein’s Theorem) For every function . E—R., if the
sequence {distg(f, P,)} is rapidly decreasing. then there is a C™ funcrion f
on R” such that 7| =1

(iv) The space (C™(E), t,) is complete.
(v) The topologies 1, and 1, for C*(E) coincide.
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(vi) The mapping ¢ of Proposition 3.1 is a linear homeomorphism of
(C*(E), 1,) onto its image in a.

(vii) There exists a continuous linear operator
L (CH(E), 1,) > (CT(R?), 7o)

such that Lf, p = f for each fe C*(E).

The proof consists of four steps. 1° (1) <> (ii) <> (ii’). Assume (i). Let p be
a polynomial of degree at most k. For each xe C”, there is a € £ such that
d :=dist(x, E£)=|x —a|. By Taylor’s formula we have

plx)= Y (D’pla)/al)(x—a)

laf <k

Hence by (i), for 6 =|x—al,

k

) <SM Y (KO |pllg/at=Mlpls . (nk'8)/IL.

lal <k /=0
By putting 6 < 1/k" we get
lp()l <Me" [[ple if dist(x, E)=1/k".

(il) = (ii') Trivial. (ii')= (i) For each a€E, Ii(a):={xeR":|x;—a) <
1/n'?k", j=1, ..,n} < E,. Hence, by the classical Markov’s inequality for a
cube,

|D*p(a)] < [&%/(1/n* k)1 1| pl gy

<MD < MK

for each xe Z” . (Here the constant M, is determined by the equivalence
of norms on the space P, of polynomials of degree at most 1, and s is
chosen so that n'?<2%)

2° (i)< (ili) <> (iv) <> (v). By step 1°, (i) implies (ii) and then we can
follow the argument of the proof of Bernstein’s theorem in [2]: Suppose
f: E— R is such a function that for each s> 0, lim,_, , k&° || f—pell =0, ps
being a metric projection of f onto P, (k=0, 1, ..). Set ¢, = 1/k" with (an
integer) r determined by both (i) and (ii), and for k=1, 2, .., take a
function u, of Lemma 1.1 corresponding to ¢,. Then the assignement

7:=P0+ Z U Grs
k=1

where ¢, :=p, —ps_1» k=1, 2, ..., determines a C* function f on R” such
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thatd?,E——-f. For, if E, = {xeR": dist(x, £)<¢g,} and € Z"_, by (i) and {ii}
we get

o
sup [ D*(uqi) < ), < ) sup | DPu, D*~Fq,]
R pex \B/) &

<M 3 (;) Cyk” D> gyl

<z

< Mlk”“‘\lqkl\ES 1‘42]"72(1”0([ +alf)

7

with a constant M, independent of k.

Assume now (iii). Then (iv) follows by continuity of the map
C(E)ysf—dist (f, P.)eR (k=0, 1, ..), where C(E) is the Banach space of
all continuous functions on E with the supremum norm. Let now / be a
compact cube in R” containing E in its interior. By Jackson’s theorem (see.
e.g., [10]), for every k there is a constant C, >0 such that for each
fe CH(E),

d(fY<Ceqrp s ()

Hence, if (C*=(E), t,) is complete, by Banach’s theorem the topologies ¢,
and 1, are equal, and we get (v). (We recall that for any C* determining
compact set E in R" the topology 1, is equal to the topology zi. If,
moreover, E has the C* extension property, then both 7, and t, are egual
to the topology 14.)

If (v) holds, there are a positive constant M and an integer » > — 1 such
that for each fe C*(E), we have q, (/i< Md.(f). Since d_(fi=Sflz
and dy(f < | fllg, it must be r>1. (Otherwise, consider the functions x7’,
m=1, 2, ...) In particular, if f is a polynomial of degree at most k&, we get

H(aﬁaxj)||5< M sup I"distg(f, PASMkE™ | [,

I1<i<sk

for j=1, 2, ..., n, which implies (i}). (We needed the assumption that Fis C~
determining. )

3° (v)<=(vi). If the topologies 7, and 7, are equal then (vi) follows
by Proposition 3.1, since every C* determining compact set £ is obviously
unisolvent. Conversely, (vi) implies that the identity map I: (C*{E). 7, —
(C*(E), 1) is continuous. Hence by Jackson’s theorem, [ is a linear
homeomorphism.

4° (i) <> (vii). The existence of an extension operator L: (C*(E), 1;} —
{C*(R"), 14) has been proved in [4] (see also [37]) under the assumption
that £ is HCP. An inspection of the proof of that result permits us to
repeat the argument under the hypothesis {i). For, let », be the functions
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of the proof of implication (i) = (iii) (step 2°) and let L, f be the Lagrange
interpolation polynomials of fe C*(E) corresponding to the Fekete-Leja
extremal points of E (Section 2). Then the operator

L= L f+ Y uyLes S~ Lef)
k=1

is obviously linear and Lf=f on E. Moreover, by (i), (ii), and (2.3), for
each a € Z" we have

sup |D*uy(Ly 1 f— Ly f)

R

<X (a> sup |D%u, D* ALy, f— L )|

B ﬁ Ey
o
< Z <,B) Mcpkr'm I1D* (L sy — Ly ) £
f<a

sgAlazkrlod”Lk+1fj__Lk_f”E
MK distp(f, Pe) S Mok ~2d,y 0 o).

Thus, L is a continuous mapping from (C*(E), t,) to (C*(R"), 1,). It
remains to prove that (vii) implies (i), and this goes on the same lines as
the proof of implication (v)= (i).

Remark 3.4. The observation that (vii) implies (i) is owed to Siciak
(personal communication). The equivalence (vi)<>(vii) is related to a
result of Tidten [9].

Remark 3.5. Some of the implications of Theorem 3.3 do not require
the assumption that E is C* determining. In particular, equivalences
(i) <> (ii) <> (ii’) hold for any compact subset E of R".

On the other hand, if E satisfies (i) then £ must be C* determining. For
let 7 be a compact cube in R” containing F in its interior. Take fe C*(R")
with f,;=0. For each k, let p, be a polynomial of degree at most & such
that ¢, :=dist(f, P.)=|lf—pill,- By Jackson’s theorem (g,) is rapidly
decreasing, and by Markov’s inequality, for each o e Z", we get

D*f=Dp, + Z D*(piy1—Ps) on [
k=1

Thus, again by Markov's inequality (on E), if xeE, then D*f(x)=
lim, _, . D%,(x)=0.
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4. APPLICATIONS

Theorem 3.3 unites two apparently different problems: Markov's
inequality and the existence of a continuous linear extension of '~
functions. This brings some advantages: e.g, we now can casily explain
the phenomenon that there is no continuous linear extension oper-
ator L:(C™(E), ;) » C*(R") in the case that E= {(x,;}eR*:
O<y<exp(—1l/x). 0<x<1}u {(0,0)}. Due to Theorem 3.3, it suffices to
show that E does not satisfy (i), which is evident if we consider the poly-
nomials p.(x, y)=y(1 —x)* for k=1,2,.. (example of Zerner {127).
{Cf also [91)

By {2. Theorem 3.1] and [4, Proposition .17, the class of UPC com-
pact sets is a subclass of sets satisfying (i) of Theorem 3.3 that is stable with
respect to the diffeomorphisms. For the whole class of (nonpiuripoiar)
compact sets with property (i), we can prove 2 more modest

PROPOSITION 4.1.  Suppose E is a nonpluripolar compact set in R". | Thai
means that there is no plurisubharmonic function u on C". u(z} # — . such
that Ec{u= —o0}.) Let h be an anaiytic mapping defined in an open
neighborhood U of E, with values in R", such that for each xekE.
det #'(x}#0. If then E satisfies (1) of Theorem 3.3, it satisfies also each of
the requirements (i}~(vii), and so does the set h(E).

jal

Proof. By Theorem 3.3 and Remark 3.3, it suffices to show that if £
satisfies (ii’) so does the set A(E). In order to do this take he h{E) and
choose aeh '(b)nE. By the assumptions on h, there exist positive
constants L and L, such that if 0 <§ <J, :=nf{|det #'(x)| : xe E}, then

B(b, L3y h(Bla, L,8)) {4.1}

(see, e.g., [11, Chap.l, Prop.5.1]). Choose an integer k,>1 so that
1/ky <6y and

F:={xeR":dist(x, E)< L, /ki} = U.

Let & be the complexification of & defined in an open set I in C” con-
taining U. We may assume that 7 is bounded on T. Since every compact
set in R” is polynomially convex, by a “uniform version” of the
Bernstein—-Walsh theorem (see [6, Lemma 2.17) there exist constants
M,>0and ae (0, 1) such that for each pe P, (k> k)

distp(peh. PYS M, \pehlis-d, 1=12. ., 4.2)

p denoting the complexification of p. By hypothesis, £ is nonpluripolar.



116 W. PLESNIAK

and by [6, Lemma 2.5] so is the set 4(E). Hence the extremal function
&, ; is locally bounded in C” (see [8]), and by the definition of @,

15kl o= I Pllze, < NPlne A" (4.3)

where A :=sup{P,(¥): yeﬁ(f])} < +00. For each /, let g, be the
polynomial (depending on p) of degree at most  such that

distp(poh, PY=\p-h—qllr.

If we put /= dk, where d is an integer such that 4a” <1, then by {4.2) and
4.3)

Ipoh—qilrsM,|p<hlg
and
lglleslipeh—qllrtlpohls<(M;+1)|pehle
Moreover, by (4.1), for each &k =k, and s=r we get

120 seo. k) S 12 = Bl Ba, 111y
Slpeh—qllr+ 09 o, L
=M, |pshlg+ HQIIHB(a,L,«'kSJ-

If now s—r>(log L,d")/log k,, then by (ii'} for E we have
H91”31a, Ly S Mlgle<MM,+1)|poh|

and choosing 7> s such that 1~ s> —log L/flog k, gives

I 2l Bb, k) S Il B L) S My I Pllue (4.4)

with constants M, and ¢ that are independent of p, k, and b. Since A(E) is
nonpluripolar, the inequalities (4.4) extend easily to the case where
1 <k < kqy. The proof is concluded.

Open Problems
1 Does (i) of Theorem 3.3 imply that the extremal function @ is
continuous in €"? In particular, does (i) imply that E is nonpluripolar?

2° Construct a compact set £ in R" that satisfies (i) and does not
have HCP.

3° Does the Cantor ternary set in R satisfy (1)?
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