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It is shown that if £ is a C~ determining compact set in n;tn, then Markov's
inequality for derivatives of polynomials holds on £ iff there exists a continuous
linear extension operator L: C~(E) --+ Coo (IhIn). Other cquivalent statemcnts (c.g.,
Bernstein's approximation theorem for eX> functions, topological linear embedding
of C""(£) into the space of rapidly decreasing sequences of real numbers) are also
given. As an application, we prove that each of those properties (of the set £) is
invariant under regular analytic mappings. ''t' 1990 Academic Press. Inc.

O. INTRODUCTION

Perhaps one of the most laborious tasks in approximation theory is to
compile the list of papers dealing with the classical Markov's inequality
and its generalizations. A contribution to this theory has been given
by W. Pawlucki and the author in [2], where it is shown that, for each
polynomial p: IKn --> IK (IK = IR or IK = C) and each multiindex iX,

(0.1 )

with positive constants M and r independent of p and iX, whenever E is a
uniformly polynomially cuspidal (UPC) compact subset of IK n. (Here IIpll E

stands for sup Ipl (E).) Actually, in order that (0.1) hold it is sufficient that
Siciak's extremal function ,p E (see [7]), defined by the formula

l/Jdx) = sup{ Ip(x)llldegp
: p is a polynomial on en of

degree ~ 1 with II pll E":;; 1},

for x E en, be HOlder continuous in the sense that

whenever dist(x, E) ,,:;; (j ,,:;; 1,
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with M> 0 and m > 0 independent of <5 (see [2. Remark 3.2]). Recently
Siciak (personal communication) has constructed a Cantor's type compact
subset E of the line-segment [0, 1J that satisfies (HCP). Thus, the family
of HCP compact sets in IR" is strictly larger than that of UPC sets. We note
that by the famous Hironaka's rectilinearization theorem and Lojasiewicz's
inequality, every subanalytic compact set E in IR" with int E dense in
E is UPC [2, Corollary 6.6]. As an application of Markov's inequality
it has also been proved in [2, Theorem 5.1 J that a function f: E ---> \R
is the restriction of a ex function on IR" iff for each r > 0,
lim k ~ x k r dist E(f, Pd = 0 (Bernstein's theorem), Pk denoting the space of
(the restrictions to E of) all polynomials of degree at most k. and

Applying both Markov's inequality and Bernstein's theorem, we have
shown in [4J (see also [3 J) the existence of a continuous linear operatol
extending C"C functions from an HCP compact subset of IR" to the whole
space and have constructed [5J a topological linear embedding of CC(Ei
into the Frechet space 0 of rapidly decreasing sequences of real numbers.

This paper completes the previous articles by W. Pawlucki and the
author. Here, applying the techniques developed in [2, 4, 5]. we point out
that Markov's inequality, as well as Bernstein's theorem, is equivalen: to
the existence of a continuous linear extension operator for CX- functions on
E in the case that E is a compact subset of IR", C'" determining in the
following sense: For each fE C X (IR"), fiE = 0 implies D~fl E = 0, for all
(J. E Z:. This seems not to be known to specialists in the field. As an
application, we show that each of the equivalent properties of E is
invariant under regular analytic maps. We close the paper by formulating
some open problems concerning sets with Markov's property.

1. C X FUNCTIOt"S

A Co function on a compact subset E of ~" is a function f: E ---> IR such
that there exists a function]ECJO(IR") with]:E=f Let eX(E) be the space
of such functions. Following Zerner [12J we introduce in CJO(E) the semi
norms d_1(f):= IlfiIE' do(f):= distEI.f, Po), and for k= 1, 2,

dk(f) := sup [k distdJ; Pi)'
i;;, 1

By Jackson's theorem (see, e.g., [10]) the dk's are indeed seminorms on
ex.'(E). Denote by [1 the topology for CX(E) determined by the seminorms
dk (k = -1, O.... ). In general, this topology is not complete.
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Let now '2 be another topology for e:O(E) determined by the seminorms

where for each compact set K in ~n and each k = 0, 1, ... ,

Then '2 is exactly the quotient topology of the space c",,(~n)/I(E), where
C""(W) is endowed with the natural topology '0 determined by the
seminorms I'I~, and I(E):= {fECCXJ(W) :fiE=O}. Since (CCXJ(W), To) is
complete and I(E) is a closed subspace of C""(IR/), the quotient space
CCXJ(W)/I(E) is also complete, whence (CCXJ(E), '2) is a Frechet space.

Suppose now E is a CCXJ determining compact set in W. Then by
Whitney's extension theorem the space (C"" (E), '2) is isomorphic to the
Frechet space of cae Whitney fields F= (Fa) (a E Z'~), where each Fa is a
continuous function on E, endowed with the topology '3 determined by the
seminorms

IIF'I~:= 1F1~+sup{I(R~F)a (y)/Ix- ylk-Ia l
: x, yEE, x#y, lal ~k},

(k = 0, 1, ... ), where

1F1~=sup{IF"(x)l :xEE, lal ~k}

and

(R~F)" (y) = P(y) - L (l/f3!)P+P(x)(y -x)p.
IPI ~k-Ial

Assume, moreover, that the compact set E has the e:o extension property:
Every CCXJ function on int E that is uniformly continuous together with all
its partial derivatives can be extended to a CCXJ function on W. Then the
topologies T2 and '3 coincide with the topology T4 determined by the semi
norms

Ifl~=sup{IDJ(x)1 :xEintE, lal ~k}.

(For details see [4].) Further on, we shall need the following known

LEMMA 1.1 (see, e.g., [1, 1.4.2]). There are positive constants C" depending
only on a E Z: such that for each compact set E in ~n and each e > 0, one
can find a C"" function u on ~" satisfying °~ u ~ 1 on ~Il, u = 1 in a
neighborhood of E, u(x) = °if dist(x, E) > e, and for all x E Wand a E Z:,
ID"u(x)1 ~ C"e- 1al.
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2. LAGRANGE INTERPOLAnON POLYNOMIALS
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Let K: N '3 j -> K(j) = (K I(i), ... , K,,(j)) E Z"~ be a one-to-one mapping
such that for each j, IKU)I:'( IK(j+ 1)1. Let m k denote the number of all
monomials XX := X~l ... x~" of degree at most k. One can easily verify that
m

k
=(llt k). Set e;(x):=xK(j), forj=1,2, .... The system {e1, ...,e",J is a

basis of the space Pk of all polynomials from !KI! to IK of degree at most
k (!K=IR or !K = C).

Let Tk = {t l , ... , td be a system of k points of !K". Consider the Vander
rnonde determinant

V( T k ) = V(t I' ... , t k ) := det[ei ( til],

where i, j E p, ...,k}. If V( T k ) 7': 0, we define

L(j)(x,Td:= V(th ..., tj _ l , X, tj + h ... , td/V(Td·

Since LUlU;, Tk )=l5ij (Kronecker's symbol), we get the following Lagrange
interpolation formula (d. [8, Lemma 2.1]):

(LIF) If PEPk and Tmk is a system of I11 k points of !Kn such that
V( T lnk ) 7': 0, then

mk

p(x)= L p(t)L(;)(x. T
lnk

),

j= I

for X E !K".

Let E be a unisolvent compact set in !K". That means that for each
polynomial p, p = °on E implies p = 0 in !K". A system Tk of k points
{t I' ... , tkJ of E is called a Fekete-Leja system of extremal points of E of
order k, if !V(Tdl;;?: !V(Sk)1 for all systems Sk= {SI, .... Sk} c E. Since E is
unisolvent. we have V( Td 7': 0 (see [8, Proposition 4.3]), and then

for j=l, ...,k. (2.11

If I: E -> !K is a function on E, for any system T lnk of extremal points of E
of order mb we set

Ink

Lkl(x) = L IUj) FiJ(x, TmJ·
j~1

1.22)

Lkl is called the Lagrange interpolation polynomial ofI of order k. Suppose
I is continuous and p k is a metric projection of f onto Pk' Then by LIF.
(2.1), and (2.2), we get for k?- 2

11/-Lkfl!E:'( III-PkIIE+ IILkf-L,dPkIIIE

:'( (mk + 1) III- Pkll E:'( 4k" distElf Pd· (23)
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Due to this inequality, in problems connected with polynomial approxima
tion of CX) functions one can well replace the metric projection
f ~ distdf, Pd by the linear projection f ~ Lkf

3. THE MAIN RESULT

Let E be a unisolvent compact set in fRll andf: E ~ fR. Fix a point to E E
and set Lof(x)=f(to). For each k= 1, 2, ..., let T fIlk = {t~ , ..., t~J cEbe a
Fekete-Leja system of extremal points of E of order mk and let Lkfdenote
the Lagrange interpolation polynomial off of degree k with nodes in TfIlk'

Then we set ({J,(f)=f(to), and for Mk<j~Mk+I' where M k :=
mo+ ... +mk for k=O, 1, ..., we define

In [5] we have proved

PROPOSITION 3.1. For any unisolvent compact subset E of fRll, the assign
ment ({J:f~ {({Jj(f)):~ 1 determines a topological linear embedding of the
space (CX) (E), TI) into the Frechet space j ofall rapidly decreasing sequences
of real numbers furnished with the norms [Xlk := sup; lixj[, k = 0, 1, ....

In order to make this article self-contained we shall repeat the argument
of [5]. It is clear that ({J is linear. By LIF (Section 2) and (2.3), ({J is
injective. To prove that ((J(f) E j, observe that by (2.3), for each r = 0, 1, ...,
and Mk<j~Mk+I' k= 1, 2, ..., we get

If({Jj(f)1 ~M~+, IILk+d-LkfIIE

~ Ck(n+ I)r+fl distdf, Pd~ Cd(fl+ I)r+fl(f),

where C is a constant depending only on nand r. If 1~j ~ M I' we also
have I({J;{fl ~ 2m 1 d -I (f). Hence, in particular, ({J is continuous. To prove
that ({J is a homeomorphism (onto ({J(CG(E)) it suffices to show that for
each r = -1,0, ... there are a positive integer s and a constant M> 0 such
that dAn ~ MI({J(f)ls' To this end, write qo := Lofand qk := Lkf- Lk-1f,
if k> O. Since f = Lt'~o qk on E, for r> 0 we have

CG CG

rdistdf,Pd~r L l'qIIE~ L k'llqkllE
k=/+I k~/+I

~ (7[2/6) sup k r
+1 Ilqkll E'

k?>1
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On the other hand, by LIF we get

1nk

ilqkll £= sup L Iqk(t7)L(I)(X, TmJI ~ Ink max Iqk(7)1.
XEE i= 1 1 ~i~ml<.

Hence, since for each k ~ 1 we have k ~ lvI.-_ l' it follows that

drCf) ~ AI sup k r
+ fI + 2 max ( IqJ i UI : AIk- 1 < j ~ M k }

k;31

with AI depending only on n. If r = 0, we also have

ex)

do(f)~ Ilf-LofIIE~ L IlqkllE~{1T2/3+ 1) Ir,o(.fl!Hl·
k=l

This completes the proof of the proposition.

Remark 3.2. In general, qJ is not a surjection on J. The reason is that
for k # I, the set TntA may meet the set Till!'

Now, our main result reads as follows.

THEOREM 3.3. If E is a C X determining compact subset of ~fI then the
following statements are equivalent:

(i) (Markov's InequalitYl There exist pos!tll'e constants M and r
such that for each polynomial p and each rx E Z'~,

(ii) There exist positive constants AI and,. such that for every pofyno
mial p of degree at most k, k = 1, 2, ...,

Ip(x)1 ~ AI Ilpll E if xEEk:={xECfl:dist(x,E)~l!kr}.

(ii') There exist positive constants Ai and r such that for every polyno
mial p of degree at most k, k = 1, 2, ... ,

Ip(x)1 ~ AI Ilpll E if xEE '- fYErrt>n'dl'~t(X r;-),<:l l k r \-' k·-I..· .. If\l, ~.,~LJ"'""/ J"

(iii) (Bernstein's Theorem) For every function f: E -+ R if fhe
sequence (distdj; PI)} is rapidly decreasing. then there is a C X funerion I
011 ~n such that II E =f.

(iv) The space (C""(E), TIl is complete.

(v) The topologies T land T 2 for C:X: (E) coincide.
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(vi) The mapping <p of Proposition 3.1 is a linear homeomorphism of
(Coo(E), '2) onto its image in J.

(vii) There exists a continuous linear operator

such that Lf"E=ffor eachfECoo(E).

The proof consists of four steps. 10 (i)~ (ii)~ (ii'). Assume (i). Let p be
a polynomial of degree at most k. For each x E iC", there is a E E such that
b := dist(x, E) = Ix - al. By Taylor's formula we have

p(x)= L (D'p(a)/cd)(x-a)O<.
10<1 <;,k

Hence by (i), for (j = Ix - ai,
k

Ip(x)1 :(: M L (kr(j)lo<l IlpIIE/a! = M IlpIIE L (nkr(j)'/l!.
10<1 <;,k ,~o

By putting b:(: l/k r we get

Ip(x)1 :(:Me" IlpilE if dist(x, E) = l/k r
.

(ii) => (ii') Trivial. (ii') => (i) For each a E E, h(a):= {x E [R" : Ix} - a}1 ~
l/n I/2k', j = 1, ..., n} c Ek • Hence, by the classical Markov's inequality for a
cube,

IDO<p(a)l:(: [k2/(I/nl!2kr)] 10<1 Ilpll!k(a)

:(: Mn I4'2. k(r+2)10<! Ilpll E:(: M,k(r+2 +5)10<1 Ilpll E

for each a E Z,:-. (Here the constant M I is determined by the equivalence
of norms on the space PI of polynomials of degree at most 1, and s is
chosen so that n 1/2:(: 2s.)

2° (i)~ (iii)~ (iv)~ (v). By step 1°, (i) implies (ii) and then we can
follow the argument of the proof of Bernstein's theorem in [2]: Suppose
f: E -'> [R is such a function that for each s > 0, lim k ~ 00 k S Ilf- Pkll E = 0, Pk
being a metric projection of f onto Pk (k = 0, 1, ... ). Set [;k = l/k r with (an
integer) r determined by both (i) and (ii), and for k= 1, 2, ..., take a
function Uk of Lemma 1.1 corresponding to [;k' Then the assignement

00

1:= Po + L Ukqk>
k~'

where qk :=Pk-Pk-" k= 1, 2, ..., determines a ex; function10n~" such
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that]:E=! For, if Ek= {XEIR": dist(x, E)~£k} and c(EZ'~, by (i) and (iij
we get

sUF ID~(ukqk)1 ~ L (pC() sup IDliukD~-{3qk[
~ Ii <s > Ek

:< M '\' (iY.)' C k r1f31 l'ID~-{3q II---=" L. P /3 k.E
Ii<s>

~ Mlk'I~'llqkll E ~ M2k-2drial + 2(f)

with a constant M 2 independent of k.
Assume now (iii). Then (iv) follows by continuity of the map

C(E)3f--->dist E (j, Pk)E IR (k=O, 1, ... ), where C(E) is the Banach space of
all continuous functions on E with the supremum norm. Let now I be a
compact cube in IR" containing E in its interior. By Jackson's theorem (see.
e.g., [10]), for every k there is a constant Ck > 0 such that for each
fE eX(E),

Hence, if (eo: (E), 'd is complete, by Banach's theorem the topologies 'I
and '2 are equal, and we get (v). (We recall that for any ex determining
compact set E in 1R" the topology '2 is equal to the topology T3' If,
moreover, E has the ex extension property, then both,2 and, 3 are equal
to the topology T-4')

If (v) holds, there are a positive constant 1'v1 and an integer r ~ - 1 such
that for each fEe"(E), we have qE.IU)~lv1dr(f). Since d_1U)= Ilfi!E
and doU ~ Ilfll E' it must be r~ 1. (Otherwise, consider the functions x7',
m = 1, 2, .... ) In particular, iff is a polynomial of degree at most k, we get

II(cf/cXj)IIE~ M sup r distECf, PI) ~ Mk r IlfiIE'
1 <s/<sk

for j = 1, 2, ..., fl, which implies (i). (We needed the assumption that E is ex
determining. )

30 (v) <0> (vi). If the topologies 'I and r 2 are equal then (vi) follows
by Proposition 3.1, since every ex determining compact set E is obviously
unisolvent. Conversely, (vi) implies that the identity map J: (C'(E), '1)--->

(C"(E), '2) is continuous. Hence by Jackson's theorem, I is a linear
homeomorphism.

4c (i) <0> (vii). The existence of an extension operator L: (ex:: (El, 'd --->

(C x (W), '0) has been proved in [4] (see also [3]) under the assumption
that E is Rep. An inspection of the proof of that result permits us to
repeat the argument under the hypothesis (i). For., let Uk be the functions
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of the proof of implication (i) => (iii) (step 2°) and let Lkfbe the Lagrange
interpolation polynomials of fE ex: (E) corresponding to the Fekete-Leja
extremal points of E (Section 2). Then the operator

::0

Lf=u,LJ+ L: uk(Lk+J-Lkf)
k~'

is obviously linear and Lf=f on E. Moreover, by (i), (ii), and (2.3), for
each IY. E Z: we have

sup IDexuALk+J-Lkf)1
11'''

~ L: (prJ.) sup IDPUkD,-P(Lk+J-Lkf)1
p<e;cx Ek

~ L: (f3rJ.) MCpkrlPI IID"'-P(Lk+, -Lkf)IIE
p<e;cx

~McxkrlaIIILk+J-LkfIIE

M~k'ial +tl distdf, Pk)~ M~k -2dr1al +n + 2(/)'

Thus, L is a continuous mapping from (CX:(E), T,) to (CXl (IR/), To). It
remains to prove that (vii) implies (i), and this goes on the same lines as
the proof of implication (v) => (i).

Remark 3.4. The observation that (vii) implies (i) is owed to Siciak
(personal communication). The equivalence (vi) ¢> (vii) is related to a
result of Tidten [9].

Remark 3.5. Some of the implications of Theorem 3.3 do not require
the assumption that E is COO determining. In particular, equivalences
(i)¢> (ii)¢> (ii') hold for any compact subset E ofW.

On the other hand, if E satisfies (i) then E must be C X determining. For
let I be a compact cube in W containing E in its interior. Take fE Coo(W)
with fi E = O. For each k, let Pk be a polynomial of degree at most k such
that ek:= distAf, Pd = Ilf- Pkllt. By Jackson's theorem (ed is rapidly
decreasing, and by Markov's inequality, for each rJ. E Z'~ we get

00

D"j= Dap, + I Da(Pk+ 1 - Pk) on I.
k~l

Thus, again by Markov's inequality (on E), if xEE, then D"f(x)=
limk~ CXJ DapAx) = O.
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4. ApPLICATIONS
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Theorem 3.3 unites two apparently different problems: Markov's
inequality and the existence of a continuous linear extension of C£
functions. This brings some advantages: e.g., we now can easily explain
the phenomenon that there is no continuous linear extension oper
ator L: (CO(E), rtl-> CX(!R") in the case that E = {(x, y) E [R2:
O<y:::;;exp(-l/x). O<x:::;; I} u {(O, OJ}. Due to Theorem 3.3, it suffices to
show that E does not satisfy (i), which is evident if we consider the poly
nomials pk(X, y) = y( 1 - xY for k = 1, 2,... (example of Zerner [12]).
(Cf. also [9].)

By [2, Theorem 3.1] and [4, Proposition 1.1], the class of upe com
pact sets is a subclass of sets satisfying (i) of Theorem 3.3 that is stable with
respect to the diffeomorphisms. For the whole class of (nonpiuripol.ar)
compact sets with property (i), we can prove a more modest

PROPOSITION 4.1. Suppose E is a nonpluripolar compact set in !R". (That
means that there is no plurisubharmonic function u on cn

• u(.::) i= - =0, such
that E c {u = - 00 }.) Let h be an analytic mapping defined in all open
neighborhood U of E, with values in !R", such that for each x E E.
det h'(x) i= O. If then E satisfies (i) of Theorem 3.3, it satisfies also each ot'
the requirements (i)-(vii), and so does the set h(E).

Proof By Theorem 3.3 and Remark 3.5, it suffices to show that if E
satisfies (ii') so does the set h(E). In order to do this take bEh(E) and
choose a E h -1(b)!l E. By the assumptions on h, there exist positive
constants Land L 1 such that if °< 0:::;; 150 := inf{ Idet h'(x)1 : x E E}, then

B(b, L(5)ch(B(a, Lto)) (4.1 )

(see, e.g., [11, Chap. I, Prop. 5.1]). Choose an integer ko> 1 so that
11k;:::;; 00 and

F:= {x E!Rn
: dist(x, E):::;; Li/k;} c U.

Let Ii be the complexification of h defined in an open set [j in iC" con
taining U. We may assume that Ii is bounded on D. Since every compact
set in !Rn is polynomially convex, by a "uniform version" of the
Bernstein-Walsh theorem (see [6, Lemma 2.1 J) there exist constants
M 1 > °and a E (0, 1) such that for each p E Pk (k?: ko)

1= 1, 2.... , i4.2)

p denoting the complexification of p. By hypothesis, E is nonpluripolar.
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and by [6, Lemma 2.5] so is the set h(E). Hence the extremal function
I/>h(Ej is locally bounded in en (see [8]), and by the definition of 1/>,

(4.3 )

where A :=sUP{I/>"(El(Y): YEh(U)} < +w. For each I, let q, be the
polynomial (depending on p) of degree at most I such that

If we put 1= dk, where d is an integer such that Aad
:;:; 1, then by (4.2) and

(4.3 )

and

Moreover, by (4.1), for each k:;:, ko and s:;:' r we get

II pil B(b. Ltk'l ~ II po hll B\a,LI/'k')

:;:; Ilpoh-q,IIF+ Ilq,IIB(a,Lr/k')

=M1 Ilpohll E + Ilq,IIB(a,Ll 1k'l'

If now s - r:;:' (log L 1dr)/log ko, then by (ii') for E we have

and choosing t:> s such that {- s:;:' -log L/log k o gives

(4.4 )

with constants M 2 and t that are independent of p, k, and b. Since 11(£) is
nonpluripolar, the inequalities (4.4) extend easily to the case where
1~ k ~ ko. The proof is concluded.

Open Problems

10 Does (i) of Theorem 3.3 imply that the extremal function I/> E is
continuous in en? In particular, does (i) imply that E is nonpluripolar?

2° Construct a compact set E in IR n that satisfies (i) and does not
have RCP.

3° Does the Cantor ternary set in 1R satisfy (i)?
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